Structural basis for epitope masking and strain specificity of a conserved epitope in an intrinsically disordered malaria vaccine candidate

نویسندگان

  • Rodrigo A. V. Morales
  • Christopher A. MacRaild
  • Jeffrey Seow
  • Bankala Krishnarjuna
  • Nyssa Drinkwater
  • Romain Rouet
  • Robin F. Anders
  • Daniel Christ
  • Sheena McGowan
  • Raymond S. Norton
چکیده

Merozoite surface protein 2 (MSP2) is an intrinsically disordered, membrane-anchored antigen of the malaria parasite Plasmodium falciparum. MSP2 can elicit a protective, albeit strain-specific, antibody response in humans. Antibodies are generated to the conserved N- and C-terminal regions but many of these react poorly with the native antigen on the parasite surface. Here we demonstrate that recognition of a conserved N-terminal epitope by mAb 6D8 is incompatible with the membrane-bound conformation of that region, suggesting a mechanism by which native MSP2 escapes antibody recognition. Furthermore, crystal structures and NMR spectroscopy identify transient, strain-specific interactions between the 6D8 antibody and regions of MSP2 beyond the conserved epitope. These interactions account for the differential affinity of 6D8 for the two allelic families of MSP2, even though 6D8 binds to a fully conserved epitope. These results highlight unappreciated mechanisms that may modulate the specificity and efficacy of immune responses towards disordered antigens.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of G1- epitope of bovine ephemeral fever virus in E. coli : A novel candidate to develop ELISA kit

Bovine ephemeral fever is an acute and arthropod-borne viral disease of cattle and water buffalo which occurs seasonally in most of the world tropical and subtropical regions. The epizootic feature of the disease has been reported in Iran with serious economic consequences. The surface glycoprotein G of bovine ephemeral fever virus (BEFV) is composed of 4 antigenic sites (G1-G4) and plays the m...

متن کامل

A Novel Multi-Epitope Vaccine For Cross Protection Against Hepatitis C Virus (HCV): An Immunoinformatics Approach

Background: Hepatitis C virus (HCV) causes acute and chronic human hepatitis infections. Due to the high genetic diversity and high rates of mutations in the genetic material so far there is no approved vaccine against HCV. Materials and Methods: The aim of this study was to determination B and T cell conserved epitopes of E1 and E2 proteins from HCV and construction of a chimeric pepti...

متن کامل

In silico Homology Modeling and Epitope Prediction of NadA as a Potential Vaccine Candidate in Neisseria meningitidis

Neisseria meningitidis is a facultative pathogen bacterium which is well founded with a number of adhesion molecules to facilitate its colonization in human nasopharynx track. Neisseria meningitidis is a major cause of mortality from sever meningococcal disease and septicemia. The Neisseria meningitidis adhesion, NadA, is a trimeric autotransporter adhesion molecule which is involved in cell ad...

متن کامل

Overcoming Antigenic Diversity by Enhancing the Immunogenicity of Conserved Epitopes on the Malaria Vaccine Candidate Apical Membrane Antigen-1

Malaria vaccine candidate Apical Membrane Antigen-1 (AMA1) induces protection, but only against parasite strains that are closely related to the vaccine. Overcoming the AMA1 diversity problem will require an understanding of the structural basis of cross-strain invasion inhibition. A vaccine containing four diverse allelic proteins 3D7, FVO, HB3 and W2mef (AMA1 Quadvax or QV) elicited polyclona...

متن کامل

Design of a Multi-epitope Peptide Vaccine against SARS-CoV-2 based on Immunoinformatics Data

Background and purpose: In 2019, the world has witnessed the emergence of a virus that caused acute respiratory distress syndrome in human with high mortality rates (approximately 3.7%). So far, no effective treatment has been proven against COVID-19. This study aimed at designing a multi-epitope vaccine combining several T-cell and B-cell epitopes of the SARS-CoV-2. Materials and methods: Bas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015